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A B S T R A C T

Lifelong learning, the ability to continually learn new concepts throughout our life, is a hallmark of human
intelligence. Generally, humans learn a new concept by knowing what it looks like and what makes it
different from the others, which are correlated. Those two ways can be characterized by generation and
classification in machine learning respectively. In this paper, we carefully design a dynamically growing
GAN called Introspective GAN (IntroGAN) that can perform incremental generation and classification
simultaneously with the guidance of prototypes, inspired by their roles of efficient information organization in
human visual learning and excellent performance in other fields like zero-shot/few-shot/incremental learning.
Specifically, we incorporate prototype-based classification which is robust to feature change in incremental
learning and GAN as a generative memory to alleviate forgetting into a unified end-to-end framework. A
comprehensive benchmark on the joint incremental generation and classification task is proposed and our
method demonstrates promising results. Additionally, we conduct comprehensive analyses over the properties
of IntroGAN and verify that generation and classification can be mutually beneficial in incremental scenarios,
which is an inspiring area to be further exploited. The code is available at https://github.com/TonyPod/
IntroGAN.
1. Introduction

Lifelong learning is one of the most essential abilities for humans
to live in the ever-changing environment. Generally, humans learn
new visual concepts from two aspects: what it looks like and what
makes it different from the others. For example, when children first learn
the visual concept dog after seeing a bunch of dog images, they can
summarize what a typical dog looks like. By changing their color or
texture, children can envisage many different dogs in their minds.
On the other hand, by correlating dog with the previously learned
cat, they can find their differences and learn to distinguish between
those two similar concepts. The aforementioned mental processes –
imagination and recognition – seem correlated and the inability of
either one impairs human visual learning (Fig. 1). In machine learning,
those two mental processes can be characterized by generation and
classification task respectively.

Lifelong machine learning [1], which studies the ongoing learning
ability of machines, can similarly extend to two branches: incremental
generation and incremental classification. While previous works pay
much attention to incremental classification, those two branches are
correlated and can be mutually beneficial in that (Fig. 2):
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1. Classification needs generation to replay old memory and
boost generalization ability. Classification learns discrimina-
tive features and decision boundaries, making it highly depen-
dent on which classes the algorithm has seen so far. However,
in lifelong learning we cannot foresee the incoming classes, so
the discriminative features and decision boundaries need to be
adjusted over time, which is problematic if we cannot replay the
old memory. For example, if we can only leverage a single binary
feature to classify horse and dog, the learned feature might be
size of the object. Assuming that we need to learn bull next, to
distinguish it from the previously learned horse, one must recall
that horse does not have horns while bull does, which is difficult
for most discriminative models since they do not care about
features that are unimportant for the current task. To address
this problem, a trivial solution is to store all the previously
seen samples, which is memory inefficient. While storing a few
typical samples (or to say episodic memory as in [2]) is a feasible
solution, we think that it can be augmented with a generative
memory, which can better depict the class distribution and offer
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Fig. 1. Illustrations of the inabilities of imagination and visual recognition (i.e. aphan-
tasia where one cannot voluntarily visualize imagery [4] and visual agnosia where one
annot recognize visually presented objects [5]). People that suffer from aphantasia
ave unusually low Vividness of Visual Imagery Questionnaire (VVIQ) scores, which
s similar to the characteristics of prosopagnosia (a variant of visual agnosia in
ace recognition) [6], indicating possible underlying relationship between those two
nabilities [4]. In each sub-figure above, the person on the left is a healthy person,
hereas the person on the right has the inability.

much more sample diversity, leading to a more generalizable
classifier [3].

2. An additional classifier can generate discriminative images
and stabilize the generation process. Instead of trying to
mimic every detail of the original image, the added classifier
may guide the generator to emphasize more the discrimina-
tive features and generate samples that really look like the
given category. In addition, experimental results in Section 4.4
show that an unsupervised generator may be dominated by
the easy category and gradually forget to generate samples of
other categories in incremental scenarios. However, adding an
additional classifier can eliminate this effect and help stabilize
the generation process.

By now we have shown the importance of generation and classifica-
ion in both human learning and machine learning, which inspires us
o design a unified approach that brings generation and classification
ogether to tackle the incremental learning problem. As for image
eneration, Generative Adversarial Networks (GANs) have proved their
uperior performance and can be adopted as a generative memory in
ncremental learning to mitigate catastrophic forgetting. As for image
lassification, inspired by the role of prototypes for their excellent
erformance in zero-shot [7]/few-shot [8]/incremental [9] learning
nd image classification [10], we convert conventional classification to
rototype-based classification where the introduced prototypes can also
e used in generation. Those ideas are further unified in an end-to-end
AN framework named Introspective GAN (IntroGAN)1 which can
ontinually learn new visual concepts and perform incremental gen-
ration and classification simultaneously. As far as we are concerned,
e are among the first to propose the joint incremental generation
nd classification task along with a comprehensive benchmark and
valuation metrics. Comprehensive analyses show that IntroGAN yields
romising results on benchmark datasets and challenging settings like
ow-shot or feature classification. More analyses are performed and
e demonstrate that incremental generation and classification can be
utually beneficial.

Our contributions are as follows:
1. We propose a new benchmark to evaluate the joint incremental

eneration and classification task. We demonstrate that generation and
lassification can be mutually beneficial in incremental scenarios with
xperimental results and in-depth analysis.

1 ‘‘Introspective’’ in our paper simply means that compared to usual incre-
ental classification methods that focuses on knowing ‘‘what makes it different

rom the others’’, IntroGAN further reflects more on ‘‘what it (a certain class)
ooks like’’. (Vanilla) GANs treat all classes as a whole and it is hard for them
o reflect on a certain class. That is why we attach the word ‘‘Introspective’’
2

o ‘‘GAN’’ to emphasize the ability to reflect on a certain class. (
2. We propose a dynamically growing GAN called Introspective GAN
(IntroGAN) to address the joint incremental and classification task with
the help of prototypes, which demonstrate competitive performance on
proposed benchmarks and more challenging scenarios like low-shot and
large-scale datasets.

3. We introduce a novel GAN fine-tuning technique that can accel-
erate GAN training in incremental scenarios.

2. Related works

Lifelong Learning. Lifelong (machine) learning is an advanced ma-
hine learning paradigm that learns continuously, accumulates knowl-
dge learned in previous tasks, and leverages it to facilitate future
earning [1]. It has other names with subtle differences such as con-
inual learning [11,12], incremental learning [13,14] and continuous
earning [15] etc., which are used interchangeably for most researchers.

notorious phenomenon that often co-occurs with lifelong learn-
ng is catastrophic forgetting [16], which indicates that the newly
earned patterns may completely erase the previous acquired knowl-
dge. According to stability-plasticity dilemma theory [17], forgetting
s essentially an expression of the excessive plasticity. Based on the
ays of reviewing historical data, existing methods that mitigate catas-

rophic forgetting can roughly fall into three categories [18]: rehearsal
hich explicitly reviews old data (e.g. exemplars) [9,18,19], pseudo-

ehearsal which implicitly reviews old data (e.g. pseudo-patterns [20–
2], GANs [18,23,24], VAEs [24] or autoencoders [25]), and non-
ehearsal which isolates the old parameters and does not review old
ata [26–28]. Since our method leverages both exemplars and gener-
ted data by GANs for memory replay, it falls between rehearsal and
seudo-rehearsal.
Leveraging Prototypes. The prototype, which has its origins in

leanor Rosch’s early study [29], means the most central member of
category. In computer vision it has been overloaded with diverse
eanings: a large spectrum of prototype-based classification methods

ely on merely one prototype for each class and predict the label of
test sample by finding its nearest prototype. Since those methods

ften use the class mean as the prototype for each class, they can
ll fall into the NCM-like methods (NCM is short for Nearest Class
ean [30]), which have been successfully applied in Zero-Shot Learn-

ng [7,31], Few-Shot Learning [8,32], Incremental Learning [9] etc.
part from assigning one prototype for each class, there are approaches

hat leverage multiple prototypes [10,32–34], which are quintessential
bservations that best represent the dataset (or better say exemplars).
nspired by [8,9], our framework leverages multiple exemplars to gen-
rate a robust prototype for each class in the feature space and adopts
CM-like strategy for classification (more details in Section 3.2). The
ifferences with [8,9] are further elaborated in Section 3.5. Since the
xemplars are selected from real samples instead of synthesized ones,
hey can be added to the training set to train the network as well in
ntroGAN.
Generative Adversarial Networks. The last few years have wit-

essed a huge success of Generative Adversarial Networks (GANs) in
mage generation [35–40]. Apart from generating photorealistic im-
ges, GANs have also been employed in other fields such as Zero-Shot
earning [41], Image Translation [42], Image Classification [43] etc.,
nd researchers show increasing interest in applying GANs in lifelong
earning scenarios [18,23,44–48]: [44–48] mainly focus on adapting
ANs to the problem of incremental generation, whereas [18,23] focus
n incremental classification and use GANs for memory replay. Instead
f focusing on generation or classification alone via GANs in previous
orks, we focus on the joint incremental generation and classification

ask, motivated by the aforementioned human visual learning mech-
nism (Section 1). To tackle the joint task, we propose a novel GAN
ramework which leverages prototypes and other useful techniques

Section 3). More discussions with some related works including the
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Fig. 2. A illustrative diagram of why incremental generation and classification are mutually beneficial in lifelong learning. The figure is at the time when we have seen horse, dog,
and first encounter bull. Left : underlying samples and decision boundaries of binary classifiers in the feature space (whether seen or unseen). Middle: due to the inability to replay
old memory, we cannot remember whether horse has horn or not; by merely using the previously learned feature size, bull and horse are overlapped and cannot be distinguished
(light-colored circles or triangles mean that the samples do not exist anymore). Right : without the guidance of the classifier, the generated sample may not look like the given
category and is actually in the region of other classes.
comparisons between GANs and the popular diffusion models [49] in
recent years are shown in Sec. S2.2

3. Introspective GAN (IntroGAN)

3.1. Problem formulation

While conventional incremental learning assumes that data con-
tinually arrive and a new sample may come from an arbitrary class
(whether old or new), we adopt a simpler but more frequently used
setting called Class Incremental Learning [9] which assumes that sam-
ples of a class or a batch of classes arrive at a time. We assume that
𝑘 classes are added at a time (𝑘 ≥ 1), then at time 𝑡 the indices of the
new classes are (𝑡 − 1)𝑘 + 1,… , 𝑡𝑘. 𝑋(𝑐)

𝑡𝑟𝑎𝑖𝑛 and 𝑋(𝑐)
𝑡𝑒𝑠𝑡 are the training and

test samples of class 𝑐 respectively. For each time step 𝑡, the objective
of our task is to achieve good generation and classification results on
the test set of the seen 𝑡𝑘 classes, i.e. {𝑋(1)

𝑡𝑒𝑠𝑡, 𝑋
(2)
𝑡𝑒𝑠𝑡,… , 𝑋(𝑡𝑘)

𝑡𝑒𝑠𝑡}. Supposing
that there are 𝑇 class increments, then there will be eventually 𝐾 = 𝑇𝑘
seen classes.

3.2. General idea of IntroGAN

The idea of IntroGAN is to make good use of prototypes in both
generation and classification. For clarity, the prototype means the rep-
resentative point for each class in the feature space, which can be either
fixed or obtained on-the-fly. For disambiguation, we assume that each
class can have only one prototype but multiple exemplars. As for clas-
sification, we convert the conventional inner-product based classifier3

into a prototype-based classifier. The reason is that prototype-based
classification methods learn a shared embedding space where samples
cluster around their corresponding prototypes, which can generalize to
novel classes at zero cost [33] and exhibit excellent performance in
Zero/Few-Shot Learning [7,8]. That is the initial motivation why the
prototype-based classifier is adopted in IntroGAN.

The next problem is whether to obtain prototypes as fixed points
or dynamic points in the feature space. In usual incremental learning
scenarios, the feature extractor should be continually updated (as il-
lustrated in Fig. 2, more features should be introduced when we want
to classify more classes), therefore absolute coordinates in the feature
space will become useless once the feature extractor updates (absolute
prototype in Fig. 3a). Thus, the prototypes should change dynamically
with the update of the feature representation. One simple way to
achieve this goal is to always use the feature of a fixed image sample

2 For simplicity, we use ‘‘S’’ to denote the reference to the supplementary
material hereinafter (e.g. Sec. S2 indicates Sec. 2 in the supplementary
material).

3 By inner-product we mean that the network has the form 𝐖𝑇 𝑓 (𝐱) + 𝐛
which is implemented by attaching a fully connected layer at the end.
3

as a prototype, but the problem is obvious since it may move far from
the class centroid in certain feature space, making it less representative
of the corresponding class (fixed prototype in Fig. 3b). Another solution
is to treat the closest exemplar to the test sample as a prototype, but
it may incur noise when some exemplars deviate too far from the
class distribution and becomes less reliable (closest prototype in Fig. 3c).
A better alternative is to keep several exemplar images and use the
average of their features as the prototypes [8,9], which is more robust
to feature change problem (relative prototype in Fig. 3d). According
to the Law of Large Numbers, the more exemplar images, the more
accurate for the relative prototype to estimate the real class centroid
in the feature space. The experimental results of different choices of
prototypes mentioned above are further visited in Sec. S6.4.

As for generation, the stored exemplars can be used as extra training
samples and we add them to the training set. Therefore, the replayed
samples compose of both generative and episodic memory, which can
benefit from both the diversity offered by generated samples and the
authenticity provided by real exemplars. The schematic illustration
of IntroGAN is shown in Fig. 4. For convenience, we use 𝐺 for the
generator, 𝐷 for the discriminator, and 𝐶 for the classifier, 𝐹 for the
feature extractor hereinafter. In Sections 3.3 and 3.4, we elaborate on
the non-incremental formulation and incremental training respectively.

3.3. Method formulation

AC-GAN [36] is originally used for image generation. Since it is
endowed with a classifier, it has the potential to perform generation
and classification at the same time, which is a good starting point to
further incorporate the idea of prototypes in the previous subsection.
The original generator loss and the discriminator loss in AC-GAN are
as follows:

𝐿𝐺 = − 𝐸𝑧∼𝑃𝑧 ,𝑐∼𝑃𝑐 [𝑙𝑜𝑔(𝐷(𝐺(𝑧, 𝑐)))] (1)

− 𝛼𝐸𝑧∼𝑃𝑧 ,𝑐∼𝑃𝑐 [𝑦𝑐 𝑙𝑜𝑔(𝐶(𝐺(𝑧, 𝑐)))] (2)

𝐿𝐷 = − 𝐸(𝑥,𝑐)∼𝑋𝑡𝑟𝑎𝑖𝑛
[𝑙𝑜𝑔(𝐷(𝑥))] (3)

− 𝐸𝑧∼𝑃𝑧 ,𝑐∼𝑃𝑐 [𝑙𝑜𝑔(1 −𝐷(𝐺(𝑧, 𝑐)))] (4)

− 𝛽𝐸(𝑥,𝑐)∼𝑋𝑡𝑟𝑎𝑖𝑛
[𝑦𝑐 𝑙𝑜𝑔(𝐶(𝑥))] (5)

where 𝛼 and 𝛽 are weighting factors. 𝑧 is a noise vector that obeys
Gaussian distribution 𝑃𝑧. 𝑐 is the class label. 𝑃𝑐 is the uniform distribu-
tion that covers all seen classes. 𝑥 is an input image. 𝑦𝑐 is the one-hot
embedding of the ground-truth label. The losses above are the original
non-saturating GAN loss [50] (Eq. (1), (3), (4)), cross entropy loss on
generated samples (Eq. (2)) and cross entropy loss on real samples
(Eq. (5)) respectively.

To incorporate prototype-based classification, we replace the inner
product in the conventional softmax function with the minus distance
between a given sample and the class prototype. The prototype is the
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Fig. 3. Illustration diagrams of different prototype selection strategies before and after the feature update. The light blue oval denotes the class distribution. The circle with number
𝑖 is the 𝑖th exemplar in the feature space. 𝑝𝐴 is/are the prototype(s) of class A. 𝑒(𝐴)𝑖 is the 𝑖th exemplar of class A (𝑖 ∈ {1,… ,𝑀}).
Fig. 4. Schematic illustration of IntroGAN pipeline at time 𝑡 when it has learned horse and dog and the incoming class is bull. We train the model by first constructing a balanced
training set that consists of: samples of ℎ𝑜𝑟𝑠𝑒 and 𝑑𝑜𝑔 generated by the old generator 𝐺𝑡−1, exemplars of ℎ𝑜𝑟𝑠𝑒 and 𝑑𝑜𝑔, and the real samples of 𝑏𝑢𝑙𝑙. Exemplars of the new class
are carefully selected, whereas those of the old classes are fixed.
𝑐

mean of the embedded exemplars of the corresponding class in the
feature space:

𝑝(𝑐) = 1
𝑀

𝛴𝑀
𝑖=1𝐹 (𝑒(𝑐)𝑗 ) (6)

In Eq. (6), 𝑝(𝑐) is the prototype of class 𝑐, 𝑒(𝑐)𝑗 is the 𝑗th exemplar
of class 𝑐. 𝑀 is the number of exemplars for class 𝑐. 𝐹 is the feature
extractor. The probability of a given input 𝑥 on class 𝑐 at time 𝑡 is
defined as:

𝐶(𝑐|𝑥) =
exp(−𝛾𝑑(𝐹 (𝑥), 𝑝(𝑐)))

𝛴𝑡
𝑖=1 exp(−𝛾𝑑(𝐹 (𝑥), 𝑝(𝑖)))

(7)

In Eq. (7), 𝛾 is the parameter that controls the smoothness of the
output probabilities, and the readers could refer to Sec. S5 for how
to set a proper 𝛾. The distance function 𝑑 is simply defined as the
most commonly used squared L2 distance (a.k.a. squared Euclidean
distance), which can be roughly seen as the posterior probability based
on the assumptions that: (1) features of each class obeys a multivariate
Gaussian distribution with an isotropic covariance matrix; (2) each
class has equal prior probability. The full derivation can be found in
Sec. S3.

Note that since we employ the nearest-prototype classifier, the
classifier does not have any trainable parameters. The feature extractor
𝐹 and the prototypes are what we need to learn that may change the
behavior of the classifier.

For prediction, we simply choose the label with the highest prob-
ability as the predicted class label as most prototype-based classifiers
4

do:

̂ = arg max
𝑐∈[1,𝑡𝑘]

𝐶(𝑐|𝑥) (8)

For training, instead of directly choosing the feature mean as the
prototype shown in Eq. (7), we want to make the best use of the
exemplar labels since the feature mean is definitely inside the convex
hull spanned by exemplars, making ‘‘classifying a sample to the closest
feature mean’’ a very relaxed constraint. To emphasize more on the
importance of each exemplar, we adopt a selection operation (denoted
as 𝑠(⋅)) to aggregate the information from all exemplars:

𝐶(𝑐|𝑥) =
exp(−𝛾𝑠(𝑑(𝐹 (𝑥), 𝐹 (𝑒(𝑐)𝑗 ))))

𝛴𝑡
𝑖=1 exp(−𝛾𝑠(𝑑(𝐹 (𝑥), 𝐹 (𝑒(𝑖)𝑗 ))))

(9)

The above equation may add some useful perturbation and increase
the discriminability because the model that satisfies Eq. (9) will be
very likely to satisfy Eq. (7). Different choices of the selection functions
(e.g. min, max, random, mean) are further evaluated in Sec. S6.4.

3.4. Training in incremental learning scenarios

By now, we have defined the losses of IntroGAN. The generator loss
and the discriminator loss are optimized in turn over the corresponding
parameters respectively. There are different choices to select the exem-
plars for each class, for example using the real samples that are closest
to the cluster centers by K-means. These choices will be analyzed in
Sec. S6.4.
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In the first class increment, there are no old classes and the training
of IntroGAN is similar to the conventional AC-GAN [36] training except
that we need to calculate the prototype as well. In the subsequent class
increments (let us assume time 𝑡), we construct a balanced training
et that covers both old and new classes: for old class 𝑐 (1 ≤ 𝑐 ≤
𝑡 − 1)𝑘), we use the trained generator 𝐺 to generate the samples 𝑋(𝑐)

𝑔𝑒𝑛
ombined with real exemplars 𝑋(𝑐)

𝑒𝑥𝑒𝑚; for new class 𝑐 ((𝑡−1)𝑘 < 𝑐 ≤ 𝑡𝑘),
e simply use all the training samples 𝑋(𝑐)

𝑡𝑟𝑎𝑖𝑛. Thus, the training set
t time 𝑡 is {𝑋(1)

𝑔𝑒𝑛,… , 𝑋((𝑡−1)𝑘)
𝑔𝑒𝑛 , 𝑋(1)

𝑒𝑥𝑒𝑚,… , 𝑋((𝑡−1)𝑘)
𝑒𝑥𝑒𝑚 , 𝑋((𝑡−1)𝑘+1)

𝑡𝑟𝑎𝑖𝑛 ,… , 𝑋(𝑡𝑘)
𝑡𝑟𝑎𝑖𝑛}.

The corresponding pseudo-code is shown in Alg. 1.

Algorithm 1 Training of IntroGAN at time 𝑡

Input: 𝑋((𝑡−1)𝑘+1)
𝑡𝑟𝑎𝑖𝑛 ,… , 𝑋(𝑡𝑘)

𝑡𝑟𝑎𝑖𝑛 // new class samples at time t
utput: {𝐷𝑡, 𝐶𝑡, 𝐺𝑡, 𝐹𝑡} and {𝑋((𝑡−1)𝑘+1)

𝑒𝑥𝑒𝑚 ,… , 𝑋(𝑡𝑘)
𝑒𝑥𝑒𝑚} // new model and

exemplars of the new classes at time 𝑡
Require: exemplars 𝑋(1)

𝑒𝑥𝑒𝑚,… , 𝑋(𝑡−1)𝑘
𝑒𝑥𝑒𝑚 and model

{𝐷𝑡−1, 𝐶𝑡−1, 𝐺𝑡−1, 𝐹𝑡−1}
1: 𝑋(1)

𝑔𝑒𝑛,… , 𝑋(𝑡−1)𝑘
𝑔𝑒𝑛 ← 𝐺𝑡−1 // replay old class samples using 𝐺𝑡−1

2: 𝑋𝑡𝑟𝑎𝑖𝑛 ← {𝑋(1)
𝑔𝑒𝑛,… , 𝑋((𝑡−1)𝑘)

𝑔𝑒𝑛 , 𝑋(1)
𝑒𝑥𝑒𝑚,… , 𝑋((𝑡−1)𝑘)

𝑒𝑥𝑒𝑚 , 𝑋((𝑡−1)𝑘+1)
𝑡𝑟𝑎𝑖𝑛 ,… , 𝑋(𝑡𝑘)

𝑡𝑟𝑎𝑖𝑛}
// create a balanced training set

3: {𝐷𝑡, 𝐶𝑡, 𝐺𝑡, 𝐹𝑡} ← {𝐷𝑡−1, 𝐶𝑡−1, 𝐺𝑡−1, 𝐹𝑡−1} // improved initialization
4: Initialize exemplars 𝑋((𝑡−1)𝑘+1)

𝑒𝑥𝑒𝑚 ,… , 𝑋(𝑡𝑘)
𝑒𝑥𝑒𝑚 for new classes at time 𝑡

5: for i ← 1 to iterations do
6: Update {𝐷𝑡, 𝐶𝑡, 𝐺𝑡, 𝐹𝑡} using a batch of 𝑋𝑡𝑟𝑎𝑖𝑛
7: if i mod interval = 0 then update 𝑋((𝑡−1)𝑘+1)

𝑒𝑥𝑒𝑚 ,… , 𝑋(𝑡𝑘)
𝑒𝑥𝑒𝑚

GAN training is time-consuming! It usually takes over 105 iterations
to train GANs from scratch and the number will be multiplied by 𝑇
if there are 𝑇 class increments in incremental learning scenarios. A
better alternative is to introduce fine-tuning technique commonly used
in CNN into GAN, which is a hardly visited topic. Considering that the
network has learned a handful of classes and is going to learn a closely
related class, it is natural to borrow knowledge from before based on
the class similarity instead of initializing randomly. We achieve this
(forward) knowledge transfer by first finding which old class the new
class is most confused with using the existing classifier, then initializing
the exclusive weights of the new class with those of the most related
old class (the exclusive weights mean the final fully-connected layer in
the classifier or the first layer of the generator where the random noise
and the one-hot class label are concatenated). The mathematical form
of this improved initialization is:

𝑊𝑛𝑒𝑤 = 𝑊 ∗
𝑜𝑙𝑑 +𝑊𝑛𝑜𝑖𝑠𝑒 (10)

where 𝑊 ∗
𝑜𝑙𝑑 is the weight of the most confused old class. 𝑊𝑛𝑜𝑖𝑠𝑒 is

an extra perturbation term to prevent completely duplicating the old
weight from old classes which may result in the extra burdens for
the network to tell those two similar classes apart later on. It is a
tensor sampled from normal Gaussian distribution 𝑁(0, 𝜆𝜎) with the
same shape as 𝑊 ∗

𝑜𝑙𝑑 , where 𝜎 is the standard deviation of 𝑊𝑜𝑙𝑑 and 𝜆
is a weighting factor. We find that improved initialization is a general
technique that can be applied to IntroGAN and other methods as well
(refer to the experimental results in Sec. S6.4).

3.5. Differences with relevant methods

Incremental Learning Methods. Before IntroGAN, there is no
method specifically designed to perform incremental generation and
classification simultaneously. However, there are works that have
the potential to do both. In Table 1, we list typical works in in-
cremental generation and classification together with their potentials
and characteristics. Note that only the first five have the potential
to perform incremental generation and classification, where others
can handle one task only. Among them, DGR [23] has a generator,
5

a discriminator and a classifier, while ESGR [18] has independent t
generators and one classifier. Both of them are not end-to-end and are
memory inefficient. DGM [45] is an interesting work that introduces
hard attention [51] and expandable models [27] to GANs, which is
quite different from other works. The most similar work to IntroGAN
is MeRGAN-JTR [44]. Since MeRGAN-JTR is also based on AC-GAN, it
has the potential to perform incremental generation and classification
as well. From the perspective of method formulation, the difference of
IntroGAN with MeRGAN-JTR mainly lies in the use of prototypes which
have the following merits: prototypes can give superior classification
performance which is attributed to the more robust prototype-based
classifier already mentioned in Section 3.2; the stored exemplars can
serve as extra training samples which offer more authentic information
for both generation and classification. Although MeRGAN-JTR has the
potential for the joint task, we should notice that it is oriented for
incremental generation only and the classification accuracy reported
in its paper is to evaluate the quality of the generated images using
an oracle classifier, which is intrinsically a performance measure for
generation. We use a slightly modified version when reporting its
performance throughout the paper.4 The idea of using a prototype-
based classification strategy is similar to iCaRL [9]. However, iCaRL
learns feature representation and the classifier separately, making it
sensitive to the choice of the feature extractor while we train the
classifier in an end-to-end manner which is more robust. Also, we
further analyze how to obtain the prototype in the training and test
phase (Sec. S6.4), where a special case that uses a mean selection
function is similar to the prototype-based classifier in iCaRL.

Few-Shot Learning Methods. In the spectrum of few-shot learning,
[52] also trains classification and generation network in an end-to-
end fashion. Apart from the task-specific considerations, the technical
differences with ours are two-folds: (1) Generating images (ours) v.s.
generating features: since the feature extractor needs to be updated
continually in incremental learning as elaborated in Section 3.2 in
the main paper. Generating features in [52] is impractical since the
features cannot be used when the feature extractor updates. (2) Learning
class distribution (ours) v.s. learning perturbation: [52] tries to learn a
perturbation over each real sample for augmentation, which is practical
for generating feature since features of the same class already cluster
and the useful perturbation added to each feature may be similar
and learnable. But in the original image space, samples of the same
class are much distant and the perturbation for each sample is much
more different. Therefore, directly learning class distribution is more
practical in our problem.

As for few-shot learning methods that leverages prototypes in clas-
sification only, Prototypical Network [8] is a typical method of this
kind. The difference in using prototypes is that we further analyze how
to obtain the prototype in the training and test phase (Sec. S6.4), which
provides more useful insights.

4. Experiments

4.1. Experimental setups

Datasets. As far as we are concerned, there is no benchmark that
valuates incremental generation and classification simultaneously.
ince incremental generation is more challenging, we mainly refer
o datasets adopted in this field when designing the comprehensive
enchmark. In the context of incremental generation, MNIST [54]
nd SVHN [55] are must-do datasets. Apart from MNIST and SVHN,
e add a harder version of MNIST called Fashion-MNIST [56] and
subset of down-sampled ImageNet called ImageNet-Dogs (difficulty:
NIST<Fashion-MNIST<SVHN<ImageNet-Dogs). The statistics of them

re shown in Table 2.

4 The original MeRGAN-JTR gives poor accuracy because it is oriented for
ncremental generation only. By creating a balanced training set combining
ld generated samples and new real samples as in IntroGAN, the classification
ccuracy can become much normal as other GAN-based methods and we report
he result of this improved version.
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Table 1
A comparison of mainstream incremental learning methods and their capabilities and
characteristics. GAN is in fact a trivial anti-forgetting technique and we do not list it
in the table above. Gen.=Generation. Cls.=Classification. E2E.=End-to-End.

Method Gen. Cls. E2E. Anti-forgetting Techniques

IntroGAN (ours) ✓ ✓ ✓ Prototypes
DGM [45] ✓ ✓ ✓ Attention [51], expandable [27]
MeRGAN-JTR [44] ✓ ✓ ✓

ESGR [18] ✓ ✓ Prototypes, multiple GANs
DGR [23] ✓ ✓

DDGR [53] ✓ ✓

MeRGAN-RA [44] ✓ Replay alignment loss
iCaRL [9] ✓ Prototypes, distillation loss [21]
LwF [21] ✓ Distillation loss

Table 2
Statistics of datasets in terms of the number of training images per class (Tr./Cls.),
the number of the test images per class (Ts./Cls.), the image resolution (Res.), gray or
RGB (Color), the number of total classes (Cls.), and the number of total class orders
experimented (Ord.), the number of classes to add in each training session (Cls./s). ‘‘∼’’

eans it is an approximate number. ‘‘⋆’’ means that the training/test set is imbalanced
or each class.
Dataset Tr./Cls. Ts./Cls. Res. Color Cls. Ord. Cls./s

MNIST [54] 6000⋆ 1000⋆ 28 × 28 Gray 10 5 2
Fashion-MNIST [56] 6000 1000 28 × 28 Gray 10 5 2
SVHN [55] ∼7325⋆ ∼2603⋆ 32 × 32 RGB 10 5 2
ImageNet-Dogs [57] ∼1300⋆ 50 64 × 64 RGB 30 2 10

Evaluation Protocols. FID [58] is used to evaluate generation per-
ormance by measuring the distance between the learned distribution
nd the ground-truth distribution in a fixed feature space. Since FID
ssumes the features obey a multivariate Gaussian distribution, we
hink that for conditional generators it is more natural to calculate
ID over each class independently and average them (which is more
easonable since it treats each class multivariate Gaussian and empha-
izes more on the generation correctness of each class). We denote it
verage condition FID (FID hereinafter for convenience): 1

𝐾𝛴𝑇
𝑐=1𝐹𝐼𝐷𝑐 .

e can get an FID at different time; by connecting those values, we can
et an FID curve. To reduce the randomness caused by different class
rders, we use multiple class orders (shown in Table 2) and average
hem. For evaluation of classification, we use the average accuracy
ACC) [9]. Similar to FID, we can get an ACC curve over time. To reflect
he overall performance via only one quantitative value to facilitate
ethod comparisons, we first average the values along the curve of

ach task and then average them over classes. The reason is that the
umber of points along the curve decreases as the task index increases,
ut we want to prevent early tasks from dominating this overall value
i.e. to treat each task equally). We denote the resulting metrics TA-ACC
task-average accuracy) for classification and TA-FID for generation
espectively.
Compared Methods. In Table 1, DGM, MeRGAN-JTR (denoted as

eRGAN for convenience hereinafter), DGR and ESGR have the poten-
ial to perform generation and classification at the same time. Among
hose, ESGR trains one generator for each class which is memory
nefficient and takes a long time to train, thus it is not added for
omparison (refer to the memory cost in Sec. S6.5). However, we expect
SGR to achieve excellent results because multiple independent GANs
ave sufficient capacity and is likely to generate samples with higher
uality. For DGM, we use its original codes and hyper-parameters. We
nly change the setting from adding one class to adding two classes at
time to match our experimental setups. Note that DGM uses a fixed

umber of epochs instead of a fixed number of iterations, making it
ard to draw ACC and FID curves with others, so we only report its
A-ACC and TA-FID. For classification, we add two widely compared
ethods Learning without Forgetting (LwF) and iCaRL. We also add

he result of joint training which uses all historical data to train a
6

lassifier (a performance upperbound for classification methods) and a
variant of IntroGAN named IntroNet for ablation study (Section 4.4).
rivial solutions like joint training and fine-tuning which are usually
een as the upperbound and lowerbound respectively are also added
or comparison.
Implementation Details. The codes are implemented in Tensor-

low [59]. To make fair comparisons, the compared methods adopt
early the same network architecture and hyper-parameters (except
GM and DDGR). For Fashion-MNIST and SVHN, we employ a four

ayer LeNet-like network; for difficult ImageNet-Dogs, we adopt a 4-
esBlock ResNet with spectral normalization [37]. By default, we apply

he improved initialization in Section 3.4 for all methods (for the
ffectiveness of this technique, refer to Sec. S6.4). For all experiments,
he loss is optimized via Adam optimizer [60] for 10,000 iterations with
he base learning rate 2×10−4. The number of exemplars for each class

is set to 20 which conforms to other works [61,62]. More analyses
n 𝑀 is presented in Sec. S6.4. 𝜆 is heuristically set to 0.5 for all
ethods and all datasets, which incorporates a tolerable random noise

nd basically preserves the knowledge from the most related old class.
ore details are elucidated in the Sec. S5.

.2. Comparisons with SOTAs

Experiments on four datasets are conducted based on the settings in
able 2. Supposing that two classes are added at a time and the 2nd
ask is to classify the first four classes (Task II (1–4)), the performance
f the first task (Task I (1–2)) can also be evaluated at this moment.
onsequently, we can evaluate Task 1 to Task 𝑡 when we are learning
ask 𝑡, and the final result graph resembles an upper triangular matrix
Figs. 5, 6) similar to [28]. The reason for such a form is that comparing
he accuracy of a 2-class classifier and the accuracy of a 4-class classifier
oes not make much sense, since these two tasks are intrinsically
ifferent. Learning 4 classes is naturally harder, and we cannot say that
he drop of accuracy from the 2-class classifier to a 4-class classifier is
orgetting, since these two accuracies are not comparable. However, in
ur upper triangular form, we can still track the 2-class accuracy of the
irst 2 classes even we have already learned 4 classes, which can reflect
orgetting more precisely.

The overall generation and classification results measured by TA-
ID/ACC are shown in Table 3.5 First of all, DDGR shows very com-
etitive results (esp. TA-ACC), which is due to the higher generation
uality of the diffusion model over GAN’s. However, since it is based
n diffusion models, it also suffers from the extraordinary slowness in
raining and sampling,6 which will restrict its actual use in incremental
cenarios. More discussions with DDGR is left in Sec. S2, and we focus
n other methods below.

On MNIST and Fashion-MNIST, DGR is unsatisfactory and by an-
lyzing the generated images we notice that the generator fails to
enerate certain class samples for certain class orders, indicating a
ode collapse problem which will be further explained in the following
aragraph. DGM performs very well on SVHN but less satisfactory
n (Fashion-)MNIST, which is probably due to the choice of hyper-
arameters instead of the method itself (we simply use its best hyper-
arameters but only change the code to adding two classes at a time).
n ImageNet-Dogs, we find that DGM tends to predict each sample

owards new classes, which accounts for the unsatisfactory results on
his dataset. The reason might be that the current hyper-parameters
re not suitable for this fine-grained dataset. DGM is a dynamically
xpandable network while other methods are almost fixed (exactly

5 The training of GAN-based methods may fail occasionally due to ran-
omness in the training procedure (the generated images are blank). When
hat happens, we simply rerun the code under the same setting. The numbers
eported are all based on successful training.

6 The sampling speed of DDGR is over 600 times of IntroGAN. More details

re in Sec. S2.
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Table 3
Overall performance of compared methods measured by TA-ACC and TA-FID on three datasets. ACC and FID are short for TA-ACC and TA-FID respectively. ‘-’ implies that the
method does not have the generation ability, which corresponds to Table 1. Dogs is short for ImageNet-Dogs. F-MNIST is short for Fashion-MNIST.

Method MNIST F-MNIST SVHN Dogs

ACC FID ACC FID ACC FID ACC FID

Joint training 99.16 – 94.18 – 89.64 – 34.45 –
Fine-tuning 41.41 – 39.23 – 38.30 – 18.48 –

DDGR [53] 95.31 58.36 96.73 44.96 85.70 61.91 – –
DGM [45] 92.15 77.72 79.88 110.90 75.00 95.91 13.69 270.70
MeRGAN [44] 97.66 10.23 82.93 25.56 53.70 99.67 27.22 163.71
DGR [23] 89.88 49.16 68.35 107.84 69.35 108.52 24.40 176.75
iCaRL [9] 89.17 – 81.27 – 70.07 – 11.16 –
LwF [21] 81.70 – 64.99 – 66.58 – 28.74 –

IntroNet (ours) 94.77 – 85.15 – 72.36 – 26.92 –
IntroGAN (ours) 97.41 8.90 88.17 25.45 77.26 91.64 35.47 169.88
speaking, only the exclusive weights for each class is changeable),
thus comparing with DGM is not very fair. Among other methods,
IntroGAN has the highest TA-ACC and a relatively low TA-FID com-
parable to others, indicating its strong discriminative power which is
endowed by prototype-based classification robust to feature update.
Another noteworthy result is that iCaRL has lower TA-ACC than LwF
on ImageNet-Dogs. The reason is probably that the representation and
classifier in iCaRL are learned separately, making it less stable and
sensitive to the choice of the feature extractor as also pointed out
in [18].

The ACC and FID curves provide more detailed views of TA-ACC
and TA-FID. Due to space limits, we only show the result curves on
Fashion-MNIST and SVHN in the main text (refer to Sec. S6.1 for MNIST
and ImageNet-Dogs). On Fashion-MNIST (Fig. 5) it can be observed that
DGR is the most unstable one. From the generated images in Fig. 7, it
can be seen that DGR fails to generate samples of certain classes (black
images), which is very obvious on Fashion-MNIST. It is because DGR
uses an unsupervised GAN, making it prone to generating easy samples
and avoid difficult ones as pointed out by [63]. This imbalance becomes
more severe when an old GAN replays what it has learned and teaches
a new GAN, since this knowledge transfer will have information loss
in practice. It can also be seen that IntroGAN constantly outperforms
MeRGAN and the reason might be two-fold: first, as illustrated in
Fig. 4 the prototype-based classification is robust to feature change
because it averages the features of the exemplars, which can lower
the risk of estimating the real class mean especially when certain
exemplars deviate too much from the class centroid; second, the stored
exemplars serve as extra training samples and can offer more authentic
information, while the replayed samples by GANs are less authentic
and may carry some noise in practice. Further analyses over these two
methods are in Section 4.3.

On SVHN (Fig. 6), IntroGAN outperforms MeRGAN and it is again
attributed to the superiority of prototype-based classification and the
extra use of exemplars as training samples mentioned above. One
noteworthy phenomenon is that in Fig. 6 that IntroGAN is not the
highest for the first one or two tasks. The reason is probably that
the classifier and the feature extractor are disentangled in IntroGAN,
therefore it does not directly guarantee that a test sample can be
correctly classified and a slightly lower accuracy occurs. However, its
potential is unleashed when more classes are encountered, which can
also be observed in the accuracy change of iCaRL.

4.3. Ablation studies

MeRGAN is the most similar to our work and the technical dif-
ferences mainly lie in: (1) prototype classifier; (2) some old training
data (i.e. old exemplars) added to the training set. To perform ablation
studies of these two techniques we conduct the following experiments
in Table 4 where IntroGAN∗ does not have (2) and its difference with
7

eRGAN mainly lies in whether to use the prototype classifier or not.
Table 4
The TA-ACC and TA-FID of IntroGAN and MeRGAN given different number of
exemplars. Exem.=exemplars. Unlike other tables, here IntroGAN∗ is the version with
prototype-based classifier but the exemplars are not added into the training set.

Method MNIST F-MNIST SVHN

ACC FID ACC FID ACC FID

IntroGAN∗ 97.42 9.39 88.06 25.92 75.45 100.59
+ 20 exem. 97.41 8.90 88.17 25.45 77.26 91.64
+ 100 exem. 97.40 10.32 88.80 25.33 82.41 107.79

MeRGAN 97.66 10.23 82.93 25.56 53.70 99.67
+ 20 exem. 97.97 10.04 85.81 24.93 61.63 102.01
+ 100 exem. 98.14 8.67 87.92 24.95 73.51 102.27

Comparing the 1st and the 4th rows in the result table, it can be
concluded that prototype-based classifier boosts much of the accuracy
but the effect over the generation quality is less certain (the FID is on
par with that of MeRGAN). By examining the remaining rows, it can be
seen that adding exemplars to the training set generally has a positive
effect on the accuracy for both IntroGAN and MeRGAN (the more, the
better), but its effect on the FID is less obvious. The reason is probably
that the calculation of FID is based on the mean and covariance matrix
in the feature space, and adding these small numbers of exemplars have
little influence on changing the mean and covariance matrix.

4.4. Mutual benefits of generation and classification

Generation Avails Classification. For non-incremental scenarios,
there are many cases including [64–66]. In incremental scenarios (Sec-
tion 1), we mentioned that generation can offer memory replay and
more generalization ability. To validate them, we first remove the GAN
from the IntroGAN framework and name it IntroNet which only has
the classification ability. IntroNet is the baseline in this experiment.
From Table 3 and Fig. 5, 6 it can be observed that IntroGAN constantly
outperforms the IntroNet. The reason might be that the GAN provides
an extra generative memory about old classes, which offers more sam-
ple diversity and can improve the generalization ability of the classifier
(i.e. less overfitting).

Classification Helps Generation. The superiority of AC-GAN [36]
over conditional GAN [67] has already demonstrated that classification
helps generation in ordinary image generation. Here, we also want
to show that classification helps generation in incremental learning
scenarios by better controlling the generation process. To demonstrate
that, we dive into the behavior of DGR with that of IntroGAN since the
training of the generator and classifier are independent in DGR (DGR
is seen as the baseline in this experiment). As shown in Section 4.2,
DGR fails to generate certain hard classes because its GAN has no class
supervision. For further analysis, we let the final DGR model generate
105 samples and calculate the statistics of class samples based on DGR’s
classifier. The full statistics are in Sec. S6.3, and a summarization in pie

charts is shown in Fig. 8, from which it can be seen that the generated
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Fig. 5. The ACC and FID curves of different methods on Fashion-MNIST. Five sub-figures vertically indicate five different tasks (e.g. Task II (1–4) means that the 2nd task is to
classify the first four classes), and the horizontal axis is the number of iterations. New classes add at a multiple of 10,000 iterations. Each point on the graph corresponds to an
accuracy or FID. Note that for FID, the lower, the better. Refer to Section 4.2 for the reason to show in such a graph. Magnify for better view.

Fig. 6. The accuracy and FID curves of different methods on SVHN similar to Fig. 5.

Fig. 7. Generated images of IntroGAN, MeRGAN and DGR in the final test on four datasets. For (Fashion-)MNIST and SVHN, each row is a different class and each column of
IntroGAN/MeRGAN uses the same latent vector (i.e. 𝑧 in Eq. (1)). For ImageNet-Dogs, we show samples of a certain class because different class samples with the are visually
insignificant, indicating this dataset is difficult for image generation. Note that black images indicate failure in generation, which is explained in Section 4.4. The generated images
over time are shown in Sec. S6.2.
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Fig. 8. The pie charts that show the portions of different class samples generated by DGR on different datasets. The annotation indicates the class name.
Table 5
The TA-ACC and TA-FID of IntroGAN and MeRGAN on different datasets when there
are only 50 training samples for each category.

Method MNIST F-MNIST SVHN

ACC FID ACC FID ACC FID

IntroGAN (50 samples) 97.31 9.13 87.93 25.56 43.28 218.05
MeRGAN (50 samples) 91.97 23.96 82.90 26.43 29.83 245.16

samples are highly imbalanced. Instead, IntroGAN can generate an
arbitrary number of samples for each class and does not exhibit such a
problem. Class imbalance is an important problem in incremental learn-
ing [68–70] and that may account for the unsatisfactory performance
of DGR on benchmark datasets.

From a broader view, the problem with generation or classification
alone mentioned above is also related to the universal shortcut learning
in deep networks [71]: without the supervision of the classifier, the
generator takes shortcut to only generate certain classes (as can be
seen in DGR); without the generator, the classifier might focus on
feature that can discriminate the current classes alone. The idea of
combining generative and discriminative learning can let the two tasks
regularize each other to alleviate shortcut learning in either side, which
forms a nice symmetry. Moreover, the idea of combining generative
and discriminative models is also related to dual learning [72], intro-
spective learning [73], and hybrids of generative and discriminative
models [74,75].

4.5. Further analyses and discussions

Low-Shot Learning Setting. IntroGAN also proves effective under
low-shot scenarios. From Table 5, it can be observed that IntroGAN con-
sistently outperforms MeRGAN even when there are only 50 training
samples (in ordinary GAN training, 50 is a much smaller number and
can be roughly seen as ‘‘low-shot’’). The reasons are again attributed to
the robustness of prototype-based classifier and the exemplars used as
additional training samples.

Large-Scale Datasets. Although IntroGAN shows promising results
in previous sections, one may still be concerned that those datasets are
still much easier than ImageNet is often used in incremental classifica-
tion. To demonstrate IntroGAN’s potential on large-scale datasets, we
extend it to generate features instead of images for efficiency concerns.
Specifically, we extract an 100-class ImageNet subset, select the first 50
classes to train the feature extractor, and use the feature extractor to
obtain features for the remaining 50 classes. Such a setting also mimics
the scenario that the algorithm has already seen a bunch of classes,
which is more similar to human learning that not everything is learned
from scratch. After that, 10 classes are added at a time and there are
5 increments in total. More SOTAs in incremental classification like
iCaRL [9], End-to-End Incremental Learning (EEIL) [76], Large-Scale
Incremental Learning (LSIL) [68] are compared and the average ACCs
are shown in Table 6.

Since these methods classify features instead of images, the results
may be different from those reported in their original papers. Among
9

Table 6
Accuracy of different methods on a 100-class subset of ImageNet over time.

Increment IntroGAN baseline iCaRL EEIL LSIL Joint Training

1 85.40 87.60 85.60 87.60 87.60 87.60
2 68.00 57.30 66.00 62.60 66.60 75.30
3 56.60 36.20 51.60 42.13 42.47 62.93
4 49.95 30.55 46.65 35.15 38.40 58.20
5 45.44 23.80 40.64 27.88 31.68 53.24

them, IntroGAN and iCaRL generally perform better and it may be
attributed to the prototype classifier that disentangles representation
and classifier learning, making it more robust to the unusual ‘‘feature
classification’’ setting here. Such a phenomenon is not so surprising
since [77] also demonstrates that this kind of embedding network may
be less prone to catastrophic forgetting than softmax classifier-based
methods. The higher performance of IntroGAN over iCaRL’s is probably
attributed to the selection functions in the prototype-based classifier
(Section 3.2) and the generalization ability provided by GANs.

Foreground Clarity and Background Diversity Over Time. Al-
though IntroGAN shows very high TA-ACC, the TA-FID is only slightly
better or on par with SOTAs. By observing the generated images of
IntroGAN on SVHN over time, we notice that the foreground clarity
decreases and the background diversity gets lower (number 6 and 2
respectively in Fig. 9). Since clarity and

diversity are important factors in judging the image quality, we sug-
gest that a future improvement over IntroGAN might be disentangling
foreground and background and generate them separately as in [78].
It may largely boost the TA-FID since the foreground and background
are mutually irrelevant in most cases. By performing random combi-
nation over foregrounds and backgrounds, more diverse images can be
generated.

5. Conclusion

In this paper, we propose a novel GAN framework called Intro-
spective GAN (IntroGAN) which can perform incremental generation
and classification simultaneously with the guidance of prototypes. We
design a comprehensive benchmark and evaluation metrics for the
joint task, perform experiments and show that our method achieves
promising results. Moreover, we also verify from preliminary stud-
ies that incremental generation and classification can be mutually
beneficial, which is a very inspiring area to be further exploited.
Future works might be performing more in-depth analyses on when or
why combining these two tasks works (direct justification of Fig. 2),
and making more improvements over IntroGAN such as disentangling
the foreground and background for better performance, reducing the
memory overhead, making it expandable etc.
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